281 research outputs found

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Electromagnetic propagation features of ground-penetrating radars for the exploration of Martian subsurface

    Get PDF
    In this work, the effects of magnetic inclusions in a Mars-like soil are considered with reference to the electromagnetic propagation features of ground-penetrating radars (GPRs). Low-frequency and time-domain techniques, using L-C-R meters and TDR instruments, respectively, are implemented in laboratory experimental set-ups in order to evaluate complex permittivity and permeability and wave velocity for different scenarios of a dielectric background medium (silica) with magnetic inclusions (magnetite). Attenuation and maximum detection ranges have also been evaluated by taking into account a realistic GPR environment, which includes the transmitting/receiving antenna performance and the complex structure of the subsurface. The analysis and the interpretation of these results shed new light on the significant influence of magnetic inclusions on the performance of Martian orbiting and rover-driven GPRs.Published5-11reserve

    The Global Search for Liquid Water on Mars from Orbit: Current and Future Perspectives

    Get PDF
    Due to its significance in astrobiology, assessing the amount and state of liquid water present on Mars today has become one of the drivers of its exploration. Subglacial water was identified by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) aboard the European Space Agency spacecraft Mars Express through the analysis of echoes, coming from a depth of about 1.5 km, which were stronger than surface echoes. The cause of this anomalous characteristic is the high relative permittivity of water-bearing materials, resulting in a high reflection coefficient. A determining factor in the occurrence of such strong echoes is the low attenuation of the MARSIS radar pulse in cold water ice, the main constituent of the Martian polar caps. The present analysis clarifies that the conditions causing exceptionally strong subsurface echoes occur solely in the Martian polar caps, and that the detection of subsurface water under a predominantly rocky surface layer using radar sounding will require thorough electromagnetic modeling, complicated by the lack of knowledge of many subsurface physical parameters. Higher-frequency radar sounders such as SHARAD cannot penetrate deep enough to detect basal echoes over the thickest part of the polar caps. Alternative methods such as rover-borne Ground Penetrating Radar and time-domain electromagnetic sounding are not capable of providing global coverage. MARSIS observations over the Martian polar caps have been limited by the need to downlink data before on-board processing, but their number will increase in coming years. The Chinese mission to Mars that is to be launched in 2020, Tianwen-1, will carry a subsurface sounding radar operating at frequencies that are close to those of MARSIS, and the expected signal-to-noise ratio of subsurface detection will likely be sufficient for identifying anomalously bright subsurface reflectors. The search for subsurface water through radar sounding is thus far from being concluded

    Monitoring the last Apennine glacier: recent in situ campaigns and modelling of Calderone glacial apparatus

    Get PDF
    The Calderone glacier is at present the most southern glacier in Europe (42° 28' 15’’ N). The little apparatus (about 20.000 m2 in surface area) has been giving an interesting response both to short- and long-term climatic variations which resulted in a considerable reduction in surface area and volume. The glacial apparatus is split into two ice bodies (glacierets) since 2000. The two glacierets are located in a deep northward valley below the top of the Corno Grande (2912 m asl) in the centre of the Gran Sasso d’Italia mountain range (Central Italy). Such glacial apparatus has been subjected to a strong reduction, with a loss of total surface area of about 50% and thickness of about 65%with respect to the hypothetical size (about 105.00 m2 and 55 m at the Little Ice Age). Since early 90s the Calderone glacier has been subjected to several multidisciplinary field campaigns to monitor and evaluate its role as an environmental indicator in the framework of global warming. Starting from historical series related to more than a century of records, the variability of the different glacier properties has been estimated by using classical geomorphologic methods as well as in situ and remote sensing techniques. In particular, the last field campaigns, in 2015, 2016 and 2019, have been carried out using Ground Penetrating Radar equipped with different antenna frequencies, drone-based survey, snow pit measurements and chemical-physical sampling. The measurement campaigns have been complemented by a regional climate analysis, spanning the last fifty years, and snowpack modelling initialized with microphysical snow data (e.g., snow density, crystal shape and size, hardness). The snowpack chemical analyses include the main and trace elements, soluble inorganic and organic ions, EC/OC and PAH, with different spatial resolution depending on the analytes. We present here the methodological approach used and some preliminary results

    Assessing the role of clay and salts on the origin of MARSIS basal bright reflections

    Get PDF
    Anomalously bright basal reflections detected by MARSIS at Ultimi Scopuli have been interpreted to indicate the presence of water-saturated materials or ponded liquid water at the base of the South Polar Layered Deposits (SPLD). Because conventional models assume basal temperatures (≤200 K) much lower than the melting point of water, this interpretation has been questioned and other explanations for the source of the bright basal reflections have been proposed, involving clay, hydrated salts, and saline ices. Combining previous published data, simulations, and new laboratory measurements, we demonstrate that the dielectric properties of these materials do not generate strong basal reflections at MARSIS frequencies and Martian temperatures. Plausible candidates remain perchlorates and chlorides brines that exhibit a strong dielectric response at much lower temperatures than other materials. This explanation might require that metastability could be maintained for a long period of time on a geological scale

    Radar Evidence of Subglacial Liquid Water on Mars

    Get PDF
    Strong radar echoes from the bottom of the martian southern polar deposits are interpreted as being due to the presence of liquid water under 1.5 km of ice

    Soil Moisture and Permittivity Estimation

    Get PDF
    The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined

    Isolation and Characterization of New Leptospira Genotypes from Patients in Mayotte (Indian Ocean)

    Get PDF
    Leptospirosis has been recognized as an increasing public health problem affecting poor people from developing countries and tropical regions. However, the epidemiology of leptospirosis remains poorly understood in remote parts of the world. In this study of patients from the island of Mayotte, we isolated 22 strains from the blood of patients during the acute phase of illness. The pathogenic Leptospira strains were characterized by serology and various molecular typing methods. Based on serological data, serogroup Mini appears to be the dominant cause of leptospirosis in Mayotte. Further molecular characterization of these isolates allowed the identification of 10 pathogenic Leptospira genotypes that could correspond to previously unknown serovars. Further progress in our understanding of the epidemiology of Leptospira circulating genotypes in highly endemic regions should contribute to the development of novel strategies for the diagnosis and prevention of this neglected emerging disease

    Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: A retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database

    Get PDF
    Aims Oral glucose-lowering medications are associated with excess risk of heart failure (HF). Given the absence of comparative data among drug classes, we performed a retrospective study in 32 Health Services of 16 Italian regions accounting for a population of 18 million individuals, to assess the association between HF risk and use of sulphonylureas, DPP-4i, and glitazones. Methods and results We extracted data on patients with type 2 diabetes who initiated treatment with DPP-4i, thiazolidinediones, or sulphonylureas alone or in combination with metformin during an accrual time of 2 years. The endpoint was hospitalization for HF (HHF) occurring after the first 6 months of therapy, and the observation was extended for up to 4 years. A total of 127 555 patients were included, of whom 14.3% were on DPP-4i, 72.5% on sulphonylurea, 13.2% on thiazolidinediones, with average 70.7% being on metformin as combination therapy. Patients in the three groups differed significantly for baseline characteristics: age, sex, Charlson index, concurrent medications, and previous cardiovascular events. During an average 2.6-year follow-up, after adjusting for measured confounders, use of DPP-4i was associated with a reduced risk of HHF compared with sulphonylureas [hazard ratio (HR) 0.78; 95% confidence interval (CI) 0.62-0.97; P = 0.026]. After propensity matching, the analysis was restricted to 39 465 patients, and the use of DPP-4i was still associated with a lower risk of HHF (HR 0.70; 95% CI 0.52-0.94; P = 0.018). Conclusion In a very large observational study, the use of DPP-4i was associated with a reduced risk of HHF when compared with sulphonylureas
    corecore